Skip to main content

Integrate - Scikit-learn Pipeline

As FLAML's AutoML module can be used a transformer in the Sklearn's pipeline we can get all the benefits of pipeline.

Prerequisites

Install the [automl] option.

pip install "flaml[automl] openml"

Load data

from flaml.automl.data import load_openml_dataset

# Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure.
X_train, X_test, y_train, y_test = load_openml_dataset(
dataset_id=1169, data_dir="./", random_state=1234, dataset_format="array"
)

Create a pipeline

from sklearn import set_config
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from flaml import AutoML

set_config(display="diagram")

imputer = SimpleImputer()
standardizer = StandardScaler()
automl = AutoML()

automl_pipeline = Pipeline(
[("imputuer", imputer), ("standardizer", standardizer), ("automl", automl)]
)
automl_pipeline

png

Run AutoML in the pipeline

automl_settings = {
"time_budget": 60, # total running time in seconds
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy', 'roc_auc', 'roc_auc_weighted', 'roc_auc_ovr', 'roc_auc_ovo', 'f1', 'log_loss', 'mae', 'mse', 'r2'] Check the documentation for more details (https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#optimization-metric)
"task": "classification", # task type
"estimator_list": ["xgboost", "catboost", "lgbm"],
"log_file_name": "airlines_experiment.log", # flaml log file
}
pipeline_settings = {f"automl__{key}": value for key, value in automl_settings.items()}
automl_pipeline.fit(X_train, y_train, **pipeline_settings)

Get the automl object from the pipeline

automl = automl_pipeline.steps[2][1]
# Get the best config and best learner
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print("Best accuracy on validation data: {0:.4g}".format(1 - automl.best_loss))
print("Training duration of best run: {0:.4g} s".format(automl.best_config_train_time))

Link to notebook | Open in colab